Temperature Field Unit
Models WI-RT-I, WI-RT-S, WI-TC-I and WI-TC-S
Versions 1.70 or later

Important Information to the User

- Changes or modifications not expressly approved by Adaptive Wireless Solutions may void the user’s authority to operate the equipment.

- This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: 1) this device may not cause harmful interference, and 2) this device must accept any interference received, including interference that may cause undesired operation.

- This device is for mobile and fixed use only (not portable or body-worn). A separation distance of 20cm must be maintained at all times between the antenna and the body of the user and bodies of nearby persons.

- This device has been designed to operate with an antenna having a maximum gain of 9 dBi. Antenna having a higher gain is strictly prohibited per regulations of Industry Canada. The required antenna impedance is 50 ohms.

- To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (EIRP) is not more than that required for successful communication.

- The installer of this radio equipment must ensure that the antenna is located or pointed such that it does not emit RF field in excess of Health Canada limits for the general population; consult Safety Code 6, obtainable from Health Canada’s website www.hc-sc.gc.ca/rpb.

FCC Certification

- This product is a frequency hopping RF transceiver module for the 900MHz ISM band, designed to meet FCC 15.247, and is used in industrial control and monitoring applications.

- The antenna is factory installed and MUST NOT be removed or modified by user.

Adaptive Wireless Solutions reserves the right to update or change this user guide at anytime. For the most recent version of the user guide, please check our website: www.adaptive-wireless.com

Printed in the USA.
<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Notes</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>0405</td>
<td>4/25/2005</td>
<td>Updated Output, cover, Entity Drawing</td>
<td>TH</td>
</tr>
<tr>
<td>0806</td>
<td>04/26/2006</td>
<td>Updates for 1.70 release</td>
<td>CW</td>
</tr>
<tr>
<td>0810</td>
<td>10/30/2008</td>
<td>Update Section 8 Drawing 6023 520 from Rev. C to Rev. E</td>
<td>MM</td>
</tr>
<tr>
<td>1210</td>
<td>12/07/2010</td>
<td>AWS</td>
<td>MJ</td>
</tr>
</tbody>
</table>
Table of Contents

Section 1: Introduction .. 1
1.1: Using This Manual .. 1
1.2: About the Device .. 2
1.3: Unpacking .. 2
1.4: Software Compatibility .. 2

Section 2: Quick Start .. 3

Section 3: Installation .. 4
3.1: Mechanical Installation ... 4
 3.1.1: Field Unit Positioning ... 4
 3.1.2: Testing Communications 5
 3.1.3: Link Test ... 7
3.2: Electrical Installation ... 10
 3.2.1: Electrical Specification 10
 3.2.2: Wiring the Thermocouple/RTD Input 10
 3.2.3: Wiring the Input Switches 11

Section 4: General Configuration .. 12
4.1: Navigating User Menus .. 12
4.2: Field Unit Displayed Messages 12
 4.2.1: The Read-Only Sequence 13
4.3: Overall Configuration Menu Map 14
4.4: Setting the Field Unit Tag Name 14
4.5: Resetting a User Password 15
4.6: Resetting All Field Unit Settings 15

Section 5: Configuring the RF Communications 17
5.1: RF Channel Selection .. 17
5.2: RF Baud Rate Selection .. 17
5.3: RF Identification Selection 18

Section 6: Configuring the Sampling and Transmission Rates 19
6.1: Selecting the Normal Transmission Rate 19
6.2: Selecting the Normal Sampling Rate 20
6.3: Selecting the Abnormal Transmission Rate 21
6.4: Selecting the Abnormal Sampling Rate 22
6.5: Setting the Smart Rate Threshold 23
6.6: Selecting the Normal Upper and Lower Values 24
6.7: Selecting Rates, Thresholds, and Deadbands via the Software 25

Section 7: Configuring the Process Variable 26
7.1: Selecting the Units of Measure 26
7.2: Selecting the Sensor Type 26
7.3: Setting a Measurement Offset 27
7.4: Trimming the Measurement 27
7.5: Entering a 22-Point Curve 27

Section 8: Maintaining the Field Unit 28
8.1: Changing the Battery .. 28

Section 9: Technical Specifications 29
 Dimensioned Mechanical Drawing 30
 Intrinsic Safety Control Drawing 31

Appendix A: Navigating the Menus 35
Appendix B: Displayed Message Definitions 36
Appendix C: Menu Map .. 37
<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Example of Incorrect Field Unit Positioning</td>
<td>4</td>
</tr>
<tr>
<td>3.2</td>
<td>Menu Map to RSSI Mode</td>
<td>6</td>
</tr>
<tr>
<td>3.3</td>
<td>Field Unit Link Test</td>
<td>7</td>
</tr>
<tr>
<td>3.4</td>
<td>Base Radio Link Test</td>
<td>8</td>
</tr>
<tr>
<td>3.5</td>
<td>WIM Field Unit Test</td>
<td>8</td>
</tr>
<tr>
<td>3.6</td>
<td>Wireless Data Loss Test</td>
<td>9</td>
</tr>
<tr>
<td>3.7</td>
<td>Thermocouple Input Wiring Diagrams</td>
<td>10</td>
</tr>
<tr>
<td>3.8</td>
<td>RTD Input Wiring Diagram</td>
<td>10</td>
</tr>
<tr>
<td>3.9</td>
<td>Input Switch Wiring Diagram</td>
<td>11</td>
</tr>
<tr>
<td>4.1</td>
<td>Field Unit Power-UP and Operations LCD Sequence</td>
<td>13</td>
</tr>
<tr>
<td>4.2</td>
<td>The Read-Only Sequence</td>
<td>13</td>
</tr>
<tr>
<td>4.3</td>
<td>Overall Configuration Menu Map</td>
<td>14</td>
</tr>
<tr>
<td>4.4</td>
<td>Menu Map to Tag Name Setting</td>
<td>14</td>
</tr>
<tr>
<td>4.5</td>
<td>Menu Map to Password Setting</td>
<td>15</td>
</tr>
<tr>
<td>4.6</td>
<td>Password Setting Using Wireless Instrumentation Manager</td>
<td>15</td>
</tr>
<tr>
<td>4.7</td>
<td>Menu Map to Reset All Field Unit Settings</td>
<td>16</td>
</tr>
<tr>
<td>5.1</td>
<td>Menu Map to RF Channel Setting</td>
<td>17</td>
</tr>
<tr>
<td>5.2</td>
<td>Menu Map to Baud Rate Setting</td>
<td>18</td>
</tr>
<tr>
<td>5.3</td>
<td>Menu Map to RF ID Setting</td>
<td>18</td>
</tr>
<tr>
<td>6.1</td>
<td>Menu Map to Normal Transmission Rate Setting</td>
<td>19</td>
</tr>
<tr>
<td>6.2</td>
<td>Incorrect Sampling Rate</td>
<td>20</td>
</tr>
<tr>
<td>6.3</td>
<td>Correct Sampling Rate</td>
<td>20</td>
</tr>
<tr>
<td>6.4</td>
<td>Menu Map to Normal Sampling Rate Setting</td>
<td>20</td>
</tr>
<tr>
<td>6.5</td>
<td>Example of Abnormal Transmission Rate Setting</td>
<td>21</td>
</tr>
<tr>
<td>6.6</td>
<td>Menu Map to Abnormal Transmission Rate Setting</td>
<td>21</td>
</tr>
<tr>
<td>6.7</td>
<td>Example of Abnormal Sampling Rate Setting</td>
<td>22</td>
</tr>
<tr>
<td>6.8</td>
<td>Menu Map to Abnormal Sampling Rate Setting</td>
<td>22</td>
</tr>
<tr>
<td>6.9</td>
<td>Smart Rate Configuration Using Wireless Instrumentation Manager</td>
<td>23</td>
</tr>
<tr>
<td>6.10</td>
<td>Normal Upper and Lower Value Example</td>
<td>24</td>
</tr>
<tr>
<td>6.11</td>
<td>Menu Map to Normal Upper and Lower Value Settings</td>
<td>24</td>
</tr>
<tr>
<td>6.12</td>
<td>Condition “Chatter” Without Time Deadband</td>
<td>24</td>
</tr>
<tr>
<td>6.13</td>
<td>Condition “Chatter” Elimination Due to Time Deadband</td>
<td>24</td>
</tr>
<tr>
<td>6.14</td>
<td>Sampling and Transmission Rate Selection Using the Software</td>
<td>25</td>
</tr>
<tr>
<td>6.15</td>
<td>Normal Upper and Lower Value Selection Using the Software</td>
<td>25</td>
</tr>
<tr>
<td>7.1</td>
<td>Menu Map to Units Setting</td>
<td>26</td>
</tr>
<tr>
<td>7.2</td>
<td>Menu Map to Sensor Selection Setting</td>
<td>26</td>
</tr>
<tr>
<td>7.3</td>
<td>Menu Map to Offset Setting</td>
<td>27</td>
</tr>
<tr>
<td>7.4</td>
<td>Menu Map to Trim Setting</td>
<td>27</td>
</tr>
<tr>
<td>7.5</td>
<td>Setting a 22-Point Curve Using Wireless Instrumentation Manager</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>Dimensioned Mechanical Drawing</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>Intrinsic Safety Control Drawing</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>Field Unit Menu Map</td>
<td>37</td>
</tr>
</tbody>
</table>
Introduction

1.1: USING THIS MANUAL

This manual is designed to assist in installing, operating, and maintaining AWS Model W1-TC and W1-RT Temperature Field Units. The manual is broken into sections as follows:

Section 2: Quick Start
This section summarizes what must be done in order to get the device installed, configured, and in operation quickly. However, it does not provide detailed or how-to information to perform the tasks outlined.

Section 3: Installation
This section explains how to correctly wire the Thermocouple/RTD Inputs, Input Switches, and ground the Field Unit. Also covered in this section are mechanical installation considerations; such as Field Unit placement.

Section 4: General Configuration
In this section, general configuration options such as password protection and selecting a user password are discussed. Also covered is the setting of a Field Unit tag name, resetting of all Field Unit settings, and a discussion of the various messages that are displayed on the Field Unit LCD.

Section 5: Configuring the RF Communications
This section covers the setup of the Field Unit RF Communications that allow the Field Unit to achieve communication with the Base Radio. Parameters discussed are the Field Unit RF ID, the RF channel setting and Baud Rate.

Section 6: Configuring the Sampling and Transmission Rates
This section aids the user in selecting the amount of time between each sample of the process, and the time between each transmission of this sample to the Base Radio. Also discussed is the use of setting an abnormal threshold in which sampling and transmission times may change during a period when the process variable is within the abnormal region.

Section 7: Configuring the Process Variable
This section helps the user select engineering units and discusses setting a measurement offset and trimming the process measurement.

Section 8: Maintaining the Field Unit
This section explains how the Field Unit should be cared for once it has been placed into service and how to change the battery.

Section 9: Technical Specifications
This section explains the technical specifications that are associated with this device such as power characteristics, accuracy, and operating characteristics.
1.2: ABOUT THE DEVICE

The AWS Temperature Field Unit is a reliable Radio Frequency (RF) transceiver coupled with a temperature input sensor that can be used to monitor a variety of processes in hazardous and hard-to-reach areas. The time and expense of running wires often makes it difficult to measure parameters that have an economic impact on your plant operation, but the Temperature Field Unit allows you to quickly and accurately monitor those devices at a fraction of the cost, which gives you bigger and faster returns on your instrumentation investments.

The Field Units communicate in a secure, digital protocol over a band of frequencies from 902MHz to 928MHz. This data communication technique has been the backbone of the military’s secure communications protocols for many years. These devices require no wires, permits or licenses, and they are easily set up and installed right out of the box.

You can use this device for long term monitoring in remote locations, for short-term data gathering on process conditions, or to quickly test the economic viability of a new installation.

The purpose of this manual is to help you install and maintain your AWS Temperature Field Unit. BEFORE setting up and installing the Field Unit please setup and configure the Base Radio.

1.3: UNPACKING

Remove the Packing List and check off the actual equipment received. If you have any questions about your shipment, please call your AWS Representative. Upon receipt of the shipment, inspect the container for any signs of damage in transit. Especially take note of any evidence of rough handling. Report any apparent damage immediately to the shipping agent.

Please note that sometimes units are assembled with accessories when shipped. Inspect the shipment carefully if you think that something is missing. This is rare, as we take considerable care to pack units for shipment, but it does sometimes happen. Please give us a call and we may be able to resolve this matter quickly over the phone.

NOTE

Please note that the carrier will not honor any claims for damage unless all shipping materials are saved for their examination. If damage is found during examining and removal of the contents, save the packing material and the carton.

1.4: SOFTWARE COMPATIBILITY

Software for AWS is revised periodically. Internal device software may contain portions that are not compatible with previous versions of the Wireless Instrumentation Manager software.

To ensure software compatibility, Wireless Instrumentation Manager software version 1.70.138 or later must be used. If you believe you are experiencing software compatibility issues please call AWS Technical Support at (978) 875-6000 or email techsupport@adaptive-wireless.com.
This section summarizes what must be done in order to get the device installed, configured, and in operation quickly. However, it does not provide detailed or how-to information to perform the tasks outlined. (Ignore steps 1 thru 5 and 16 if you do not have the split architecture Field Unit).

1. Install the Field Unit in the desired location of operation.
 Note: Trimming of the measurement may be necessary before the device can be placed in service. If trimming is required perform steps 1 and 6-16 prior to placing device in service.

2. Wire the channel input(s) as shown in top left figure.

3. Wire input switches as shown in middle left figure (optional).

4. Ground the Field Unit via grounding screw provided in enclosure.

5. Close enclosure and secure enclosure via set screw.

6. Turn on the Field Unit by simultaneously pressing and holding the ENTER and NEXT buttons the until unit powers up.

7. Set the RF CHAN setting equal to the Base Radio’s RF Channel.

8. Set the BAUD RT setting equal to the Base Radio’s Baud Rate.

9. Set the RF ID number to be a unique value between 1 and 50.

10. Select normal transmission rate.

11. Select normal sampling rate.

12. Select abnormal transmission rate.

13. Select abnormal sampling rate.

14. Set normal upper and lower values.

15. Select engineering measurement units.

16. Select the thermocouple/RTD sensor type.

If the “RF OFF” message is being displayed on the Field Unit LCD, perform the following:

- Set the RF CHAN setting equal to the Base Radio’s RF Channel.

If a “NO RF” message is being displayed on the Field Unit LCD, check the following:

- Is the Field Unit set to the above listed settings?
- Is the Base Radio on?
- Do the Field Unit and Base Radio settings match? (See Section 5 of Field Unit and Base Radio User Guides)
- Are the Base Radio and Field Units unable to communicate due to obstructions or distance? (See Section 3.1.1: Field Unit Positioning)

Warning

Warning! If the Field Units have been running for an extended period of time with no signal from the Base Radio (the Base Radio is off or not present), the Field Units will only search for the Base Radio every one hour or so. Turning the Field Units off and back on will cause them to begin searching immediately.
3.1: Mechanical Installation

In this section, mechanical installation instructions are discussed for the various setup capabilities of the Temperature Field Units.

Each AWS Temperature Field Unit is a rugged device, but it provides much better performance if installed with careful consideration, as noted in this manual. It may be utilized in any Temperature measurement service so long as care is exercised to prevent exposing the sensing elements to excess stress or temperature. Installation practices have a lot to do with these service parameters and the life that you can expect from your AWS Temperature Field Units.

Give careful consideration to the environment where you will be installing your instrument. Avoid installations that expose the device to excess temperature, high vibration, considerable shock, or exposure to dripping condensate or corrosive materials. Also avoid installing the device in an unserviceable location.

Most often these problems can be avoided with some thought at the time of installation. The practices noted below are generally recommended, but they can only act as a guideline and cannot cover all possible variations. The final installation must be made at the discretion and approval of the user. You must be the judge of the actual installation.

Dimensioned mechanical drawings for aid in mechanical installation are located in Section 9 Technical Specifications.

3.1.1: Field Unit Positioning

Correct positioning of the Field Unit will ensure the best performance of the device. When planning the positioning of the Field Units, there are a few parameters that must be paid attention to:

- The top of the Field Unit should point in an upward fashion. The bottom of the Field Unit should NOT point directly at the Base Radio and the Field Unit LCD should point away from the Base Radio.

- All Field Units should maintain an approximate spacing of at least six feet apart from one another. Should you need to put Field Units closer than six feet, please see Section 3.1.1.1 Technique for Close Positioning of Field Units.

- The line of sight range between a Field Unit and Base Radio is 2000 feet at the 19.2K baud rate setting. Note that this range is reduced by the amount of RF Noise present, obstructions, and the material properties of the obstruction.

- Only place the Field Unit in ambient operating temperatures of -40°F to 185°F (-40°C to 85°C).

Figure 3.1 gives examples of incorrect setups according to the previously mentioned parameters.

Because there are so many setup possibilities we cannot cover them all. A correct setup would make sure that the above warnings are heeded, and that the Field Unit and Base Radio are capable of communication. The Testing Communications section will help you to determine if you have selected the correct installation points and orientations for your application.
3.1.1.1: Technique for Close Positioning of Field Units

Field Units may be placed closely together by carefully following this procedure. If this procedure is not followed, the communication range of the Field Units will be significantly reduced and the Field Units may eventually lose communication with the Base Radio entirely. This procedure is easy to implement, but please read carefully for a full understanding.

The Base Radio synchronizes with the Field Units in Synch Groups of 7, organized by their RF ID numbers. If you want to place two Field Units closer than 6 feet, make sure that you have set them in different groups. Note that this only applies to Field Units that are communicating with the same Base Radio. The groups are defined in the table to the left.

For example, if two Field Units are placed one foot apart and the first Field Unit has an RF ID number of 027, that means it is in the 4th group (22-28). The second Field Unit must have an RF ID number that is in another group (less than 22 or greater than 28). Setting the RF IDs of two closely spaced Field Units so that the RF ID numbers are greater than 7 apart ensures that the Field Units are in different Base Radio sync groups. This allows the closely spaced Field Units to properly receive their synchronization signal from the Base Radio and maintain their proper communication and range.

You can also ensure that closely spaced Field Units maintain their synchronization with their Base Radio by simply assigning each of the two closely spaced Field Units to talk to a different Base Radio.

Either way, following this process will keep the Base Radio and Field Units properly synchronized for long-term communication.

<table>
<thead>
<tr>
<th>Group</th>
<th>RF ID Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-7</td>
</tr>
<tr>
<td>2</td>
<td>8-14</td>
</tr>
<tr>
<td>3</td>
<td>15-21</td>
</tr>
<tr>
<td>4</td>
<td>22-28</td>
</tr>
<tr>
<td>5</td>
<td>29-35</td>
</tr>
<tr>
<td>6</td>
<td>36-42</td>
</tr>
<tr>
<td>7</td>
<td>43-49</td>
</tr>
<tr>
<td>8</td>
<td>50-56</td>
</tr>
<tr>
<td>9</td>
<td>57-63</td>
</tr>
<tr>
<td>10</td>
<td>64-70</td>
</tr>
<tr>
<td>11</td>
<td>71-77</td>
</tr>
<tr>
<td>12</td>
<td>78-84</td>
</tr>
<tr>
<td>13</td>
<td>85-91</td>
</tr>
<tr>
<td>14</td>
<td>92-98</td>
</tr>
<tr>
<td>15</td>
<td>99-100</td>
</tr>
</tbody>
</table>

3.1.2: Testing Communications

Remember, proper placement of the Field Unit will optimize your RF communication range and capabilities. Perhaps the best test to perform before mechanically mounting the unit is a quick hand-held test. There are two types of tests you can conduct: the RSSI (Received Signal Strength Indicator) Diagnostic and the Link Test. The RSSI Diagnostic measures the strength of the signal at the Field Unit. The Link Test measures the throughput of data sent to and from the Field Unit. The Link Test may be conducted from the Field Unit, Base Radio, or through WIM.

The RSSI Diagnostic should be conducted first to determine if the Base Radio is communicating with the Field Unit. Then the Link Test may be performed to test the validity of the installation.

To perform these tests you should have a good idea of where the Base Radio will be placed (for more information see Section 3 of the Base Radio User Manual). Put the Base Radio in this area and power it up. Make sure that the Base Radio and Field Unit are on the same RF Channel and Baud Rate (See Section 5). You may also have to increment the number of Field Units with which the Base Radio is communicating (See the Base Radio User Manual Section 4.3).

Once both the Base Radio and Field Unit are set up to be on the same network, make sure communication is established by looking at the Field Unit LCD for the ‘RF OK’ message in the Read-Only Sequence (see Section 4.2.1).

After communications have been established, go to Section 3.1.2.1 for the RSSI Diagnostic or Section 3.1.3 for the Link Test.
The Field Unit should be placed in RSSI Diagnostic mode to determine the signal strength at the location of the equipment to be monitored.

The RSSI Diagnostic, located in the Field Unit’s diagnostic menu, displays the RF signal strength in one of seven ranges. The signal strength is displayed on the LCD using a combination of ‘>’ and ‘_’ characters. Full signal strength is displayed as “> > > > > > >” while minimum signal strength is displayed as “> _ _ _ _ _ _”. If the field unit is not communicating with the Base Radio (i.e. NO RF), all underscore characters will be displayed (“_ _ _ _ _ _ _”).

The RSSI is measured every time the Field Unit receives a message from the Base Radio. The signal strength of the received message from the Base Radio is calculated during this time. The actual signal strength in dBm for each range is shown below:

<table>
<thead>
<tr>
<th>></th>
<th>></th>
<th>></th>
<th>></th>
<th>></th>
<th>></th>
<th>></th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than</td>
<td>Between</td>
<td>Between</td>
<td>Between</td>
<td>Between</td>
<td>Between</td>
<td>Greater than</td>
</tr>
<tr>
<td>-105 dBm</td>
<td>-100 dBm &</td>
<td>-95 dBm &</td>
<td>-90 dBm &</td>
<td>-85 dBm &</td>
<td>-80 dBm</td>
<td>-80 dBm</td>
</tr>
</tbody>
</table>

To place the Field Unit in RSSI Diagnostic mode follow the menu map shown in Figure 3.2. Note that the RSSI menu is under the DIAGNSE menu and not the CONFIG menu.

![Figure 3.2: Menu Map to RSSI Mode](image)

Now that the Field Unit is in the RSSI mode, bring the Field Unit close to the equipment you wish to monitor. Look at the LCD; notice the ‘>’ will constantly fluctuate. One should estimate an average value based on these fluctuations. The ideal signal integrity is seven arrows.

Once you have verified that you are receiving a signal, you should check to make sure the Field Unit is communicating properly with the Base Radio. To do so, exit the RSSI by pressing ENTER, and then navigate to EXIT? of the diagnostic menu and return to the Operations Sequence shown in Figure 4.1 in Section 4.2.

If you see a NO RF message, then you do not have satisfactory RF communication with the Base Radio. If your application allows, move the Field Unit to a different position and check again for communications. If your application only allows you to mount at this particular point, you may want to try a slower baud rate setting for an increased range.

One final solution is to reposition the Base Radio. However, this may affect communications with previously installed Field Units, and if so, may require the use of a second Base Radio for your application. To select a better spot for the Base Radio, see Section 3.1.1 of the Base Radio User Manual.

NOTE

While using a slower baud rate increases communication distance, it also increases the transmit rate. See Section 5.2 for a list of the fastest transmit rates for each baud rate. This may not be suitable for your application.
3.1.3: Link Test

The Link Test measures the wireless link performance of a Field Unit running in its normal operating mode. Messages are sent from the Field Unit to the Base Radio at a predefined interval called the Transmit Rate (see Section 6.1). Each message contains data for the previous time period (since the last transmit). The Link Test looks at the wireless performance going in both directions, from the Field Unit to the Base Radio and vice versa, and comes up with a rating. The result that appears on the display shows the determined link strength.

In order to perform this test, the Field Unit must be communicating on the same channel and baud rate as the Base Radio. See Section 5 to configure communications.

The Link Test may be conducted from the Field Unit, Base Radio, or through WIM. Running the Link Test from WIM is ideal for testing communications for an installation with remote or hard-to-get-to Field Units. To conduct the Link Test from a Base Radio, see Section 3.1.3.2. To conduct the Link Test from WIM, see Section 3.1.3.3.

3.1.3.1 Conducting a Link Test from the Field Unit

The Link Test is located in the Field Unit’s diagnostic menu (see Figure 3.3).

![Figure 3.3: Field Unit Link Test](image)

Using the NEXT and ENTER buttons, navigate to Link Test, and press the ENTER button to begin the test. The Field Unit will begin to test the link in both directions (to and from the Base Radio). During this time, the word TEST will appear on the LCD display. When the test is complete, the Field Unit will display the quality of the link. Be aware that the Field Unit uses the configured Baud Rate and transmission rate to perform this test. The length of time it will take to perform this test is dependent upon how fast the device is normally transmitting.

When enough messages have been observed, a link strength will be shown on the display. 5 STARR indicates the strongest link, while 1 STARR indicates the weakest link. The Link Test will continue to be evaluated and the rating on the screen may adjust itself. Keep in mind that the longer the Link Test runs the more data the Field Unit will have to evaluate.

The Field Unit installation site should strive to place the Field Unit in a location where it receives the highest number possible. A stronger link means less data re-transmits and better battery life.

3.1.3.2 Conducting a Link Test from the Base Radio

When the Link Test is conducted from a Base Radio, it measures the link strength between a selected Field Unit and the Base Radio. The Link Test data must be configured to match the communication parameters of the Field Unit from which you want to test. The Link Test is located in the Base Radio’s diagnostic menu (see Figure 3.4).

To conduct a Link Test from the Base Radio, Navigate to Link Test, and press the ENTER button.
Next enter the RF ID for the Field Unit that you want to test. Then select the Normal Transmit rate that matches that of the Field Unit. If the Field Unit is transmitting at a different rate than the one you select in this menu, your results will be invalid.

Once the Normal Transmit Rate is selected, the Link Test will immediately start. The Base Radio will begin to test the link from the Field Unit. During this time, the word TEST will appear on the LCD display. When the test is complete, the Base Radio will display the quality of the link. Be aware that the length of time it takes to perform this test is dependent upon how fast the Field Unit is normally transmitting.

When enough messages have been observed, a link strength will be shown on the display. 5 STARR indicates the strongest link, while 1 STARR indicates the weakest link. The Link Test will continue to be evaluated and the rating on the screen may adjust itself. Keep in mind that the longer the Link Test runs the more data the Field Unit will have to evaluate.

The Field Unit installation site should strive to place the Field Unit in a location where it receives the highest number possible. A stronger link means less data re-transmits and better battery life.

To conduct a Link Test from WIM, make sure that WIM is running on the PC attached to the Base Radio. Then go to the Field Unit view, and right-click on the Field Unit you want to test Received data transmission from (Figure 3.5).

Figure 3.4: Base Radio Link Test

When enough messages have been observed, a link strength will be shown on the display. 5 STARR indicates the strongest link, while 1 STARR indicates the weakest link. The Link Test will continue to be evaluated and the rating on the screen may adjust itself. Keep in mind that the longer the Link Test runs the more data the Field Unit will have to evaluate.

The Field Unit installation site should strive to place the Field Unit in a location where it receives the highest number possible. A stronger link means less data re-transmits and better battery life.

3.1.3.3 Conducting a Link Test from WIM

To conduct a Link Test from WIM, make sure that WIM is running on the PC attached to the Base Radio. Then go to the Field Unit view, and right-click on the Field Unit you want to test Received data transmission from (Figure 3.5).

Figure 3.5: WIM Field Unit View
3.1.3.3 Continued

Select **Wireless Data Loss Test**… from the popup menu.

The Wireless Data Loss Test window appears (Figure 3.6). The name of the Field Unit being tested appears in the title bar in parenthesis.

![Wireless Data Loss Test Window](image)

Figure 3.6: Wireless Data Loss Test

In the top of the window, you can configure the test to run for a specified amount of time. The longer the test, the more data the test will have to do an evaluation. Type the length of time that you want to run the test and click **BEGIN** to start. Once the test starts, WIM will reconfigure the Field Unit’s Transmit Rate to the fastest possible for the selected Baud Rate. These rates are listed in Section 5.2. After the test has completed, it will restore the previously configured Transmit Rate.

During the test, the communications reliability is evaluated while the Field Unit is running under normal operating conditions. As the test runs, a link strength will be shown in the lower right hand corner of the window. 5 STARR indicates the strongest link, while 1 STARR indicates the weakest link. The Link Test will continue to be evaluated and the rating on the screen may adjust itself for the specified amount of time.
3.2: Electrical Installation

Caution
Remember to turn off all power BEFORE hooking up any wires!

3.2.1: Electrical Specifications

Warning
Explosions may result in death or serious injury. Do not remove the instrument cover or open wiring housing in explosive atmospheres when power and communications are on.

Input Switch Characteristics
- For simple device monitoring only (i.e., contact closures)
- Input switches share common ground

3.2.2: Wiring the Thermocouple/RTD Input

NOTE
For Dual T/C installations, the inputs share a common ground (-). Use Ungrounded T/C’s or ensure that both T/C’s are at the same ground potential to avoid ground loop effects.

NOTE
If using two thermocouples remember to enable both thermocouple inputs otherwise the measurement of the disabled thermocouple will not be made.

To properly wire a thermocouple/RTD to the Temperature Field Unit follow the wiring diagram provided below. Please note that a thermocouple CANNOT be wired to a WI-RT unit, and a RTD CANNOT be wired to a WI-TC unit.

The diagram shown in Figure 3.7 below refers to the circuit board found at the base of the Field Unit, within the junction box. Before connecting wires to the terminal blocks, the input wires should be routed into the back of the enclosure and threaded through the center of the circuit board.

Figure 3.7: Thermocouple Input Wiring Diagrams

Figure 3.8: RTD Input Wiring Diagrams
3.2.3: Wiring the Input Switches (Optional)

To properly wire a switch input device to the Temperature Field Unit simply follow the wiring diagram provided below. Please note that loop power does NOT need to be supplied as the Field Unit supplies the monitoring power. The Temperature Field Unit has the capability of monitoring two input switches.

The most common application for the switch inputs is to monitor a contact closure. However, the input switches must only be attached to simple devices. A simple device is one that meets the conditions set forth in the Intrinsic Safety Control Drawing, which can be found in the Technical Specifications section of this manual.

The diagram shown below in Figure 3.9, refers to the circuit board found at the base of the Field Unit, within the junction box. Before connecting wires to the terminal blocks, the input wires should be routed into the back of the enclosure and threaded through the center of the circuit board.

The RTD Temperature Field Unit (WI-RT-S) has only ONE INPUT SWITCH.

Warning

Wiring the Temperature Field Unit to a non-simple device (such as an explosion proof device) voids the intrinsic safety of the Field Unit. A simple device is one that meets the conditions set forth in the Intrinsic Safety Control Drawing found in the Technical Specifications section of this manual.

Note that the Field Unit may continue to monitor the temperature inputs in addition to the contact closure monitoring. Also, the contact closure monitoring requires NO POWER to be supplied to the loop, nor does the user have to enable or enter any information via the NEXT and ENTER buttons, as this is done automatically by the Field Unit.

No messages indicating the status of a monitored contact closure are displayed on the Field Unit LCD. The status of the input switches can be found in the Wireless Instrumentation Manager under the Field Unit View. An open contact closure is indicated as an ‘O’ and a closed contact closure is indicated as a ‘C’ on the Field Unit View (see Wireless Instrumentation Manager Manual section 8.1) for each input switch.
This section discusses the generalities for configuring the Field Unit via the NEXT and ENTER buttons. The subsections are as follows:

4.1 Navigating User Menus
4.2 Field Unit Displayed Messages
 4.2.1 The Read-Only Sequence
4.3 The Overall Configuration Menu Map
4.4 Setting the Field Unit Tag Name
4.5 Setting a User Password
4.6 Resetting All Field Unit Settings

4.1: Navigating User Menus

Pressing either the NEXT or ENTER buttons located on the front of the Field Unit or Base Radio just below the LCD screen is all that is needed to navigate the respective menus. Pressing both of these buttons for one second will turn the unit on.

Pressing the NEXT button at any time while the Field Unit is cycling through the normal messages causes the Field Unit to enter the setup mode. The NEXT button is then used to step through menu options, and the ENTER button is used to enter a sub menu of what is displayed on the LCD at that time. If no button is pressed within a 30-second period, the unit goes back to the normal display mode.

If you enter a sub menu that requires a numerical input, such as 001, the leftmost 0 will be blinking. This indicates that pressing the NEXT button will increment this value with each press from 0 to 9 and back to 0 again. Pressing the ENTER button will move to the next available value. If the last value is blinking, pressing ENTER will save the entered values and return from the sub menu.

If both the NEXT and ENTER buttons are depressed at the same time, a message on the LCD displaying OFF? will appear. If both buttons are released upon appearance of this message the user will be returned to the scrolling main screen. If both buttons are not released for the duration of the OFF? message, you will be prompted for the password. Upon entering the correct password, the unit will power down and turn off.

To turn the Field Unit on, press and hold both the NEXT and ENTER buttons for a few seconds. Upon power up, the Field Unit will display the Power-Up Sequence, and then go into the Operations Sequence. These sequences are shown in Figure 4.1.
4.2: Continued

NOTE
During configuration and testing, keep Field Units at least six feet from the Base Radio and other Field Units.

4.2.1: The Read-Only Sequence

Once the Field Unit is in the Operations Sequence, a user may access the Read-Only Sequence without a password by simply pressing the ENTER button at any time. The Read-Only Sequence, as shown in Figure 4.2, displays extra information about the current settings of the Field Unit that is not seen during the Operations Sequence, but does not allow any changes to be made to these settings.

Figure 4.1: Field Unit Power-Up and Operations LCD Sequences

Figure 4.2: The Read-Only Sequence
4.3: Overall Configuration Menu Map

NOTE
The user must enter a four digit password to enter the CONFIG and DIAGNSE. The FACTORY menu is for factory use only. The default user password is 0000. For more information on the password see Section 4.5.

NOTE
Once WIM has been used to configure the Field Unit, this menu option will be disabled on the Field Unit LCD menu. See Section 4.1 for more details.

4.4: Setting the Field Unit Tag Name*

A complete Field Unit Menu Map is shown in Appendix C. Below is an overall view of the configuration menu to aid the user in setting up the Field Unit for proper operation.

Each Field Unit has a user-settable Field Unit Tag Name. This Tag Name is displayed upon Field Unit power up, and when the Read-Only Sequence is selected. The Tag Name is a 21-character string that is displayed in three separate 7-character flashes on the Field Unit LCD.

The user may choose from A-Z, 0-9, a dash (“-“), and an underscore (“_“). The underscore has a special meaning to the software inside the Field Unit. For example, if you have a Tag Name that is only 5 characters long, then you do not want to wait for the rest of the 16 characters to be displayed on the LCD. So if your Tag Name was “TANK1”, you would want to enter the Tag Name like this: “TANK1_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _”.

The Tag Name can also be entered via WIM. To do so, when the software is in the Field Unit view (See Appendix A), right-click the Field Unit icon, select Rename, and then enter the Tag Name you wish the Field Unit to have.

This Tag Name will then be uploaded to the Field Unit and can be displayed by pressing the ENTER button when the unit is in the Operations Sequence (See Section 4.2.1 of this manual).

* Indicates that Menu is Disabled if Wireless Instrumentation Manager is detected. (See Appendix A)
4.5: Setting a User Password*

Each Field Unit has a password that will lock out undesired users from making changes to the Field Unit. Any user may still view some of the Field Unit settings by pressing the ENTER key during the Operations Sequence and viewing the Read-Only Sequence.

The password is a four-digit password. The factory default is 0000. If you wish to select a different password, one may be entered via WIM. To do so, enter the configuration dialog box (See Appendix A). From the configuration dialog box, click on the General tab to bring up the general information as shown in Figure 4.6.

![Figure 4.6: Password Setting Using Wireless Instrumentation Manager](image)

If you have the Wireless Instrumentation Manager software this menu option will not be accessible via the Field Unit once the Field Unit detects that the software is being used (See Appendix A for more details). The password should be entered using the Wireless Instrumentation Manager software. To do so, enter the configuration menu (See Section 9.2 of the Wireless Instrumentation Manager User Manual). Once in the configuration menu click on the General tab to bring up the general information as shown in Figure 4.6.

The Field Unit password for this device can be set by entering a four-digit number in the Field Unit Password field. Once a password has been entered, click OK to save and download the password to the Field Unit.

Please note that the password only protects the Field Unit from unauthorized configuration via the NEXT and ENTER buttons. The Wireless Instrumentation Manager requires a user login password to gain access to all configuration parameters. However, user accounts are available and can be set with different access levels and restrictions (For more information on user accounts see the Wireless Instrumentation Manager User Manual Section 8.4).

4.6: Resetting All Field Unit Settings

To reset all Field Unit settings to their default state, you must navigate to the DEFAULT menu option in the CONFIG menu via the keypad.

Once at the default menu option, pressing the ENTER button will display ‘RESET?’ on the LCD; which asks if you are sure you want to reset the device to its default configuration. You will then be prompted with ‘NO’ on the LCD. Pressing the ENTER button while ‘NO’ is being displayed will NOT reset the device. Pressing the NEXT button will display ‘YES’ on the LCD. If you press the ENTER button while ‘YES’ is being displayed the device will be reset.

* Indicates that Menu is Disabled if Wireless Instrumentation Manager is detected. (See Appendix A)
4.6: Continued

![Diagram showing menu map to reset all field unit settings.](image)

Figure 4.7: Menu Map to Reset All Field Unit Settings
Configuring the RF Communications

Warning

Warning! If the Field Units have been running for an extended period of time with no signal from the Base Radio (the Base Radio is off or not present), the Field Units will only search for the Base Radio every one hour or so. Turning the Field Units off and on will cause them to begin searching immediately.

5.1: RF Channel Selection

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The RF Channel defines a set of frequencies on which communication takes place between the Base Radio and the Field Unit. Each RF Channel has a different set of frequencies, thus allowing the user to have multiple different wireless networks co-existing throughout the same facility.</td>
</tr>
</tbody>
</table>

In order for the Field Unit and the Base Radio to communicate, they must be on the same RF Channel and must be transmitting at the same Baud Rate. While all Field Units and Base Radios are set to default configurations at the factory, if any configuration differences are present the Base Radio will not be able to communicate with the Field Units. The subsections are as follows:

- 5.1: RF Channel Setup
- 5.2: RF Baud Rate Setup
- 5.3: RF Identification Setup

The RF Channel defines a set of frequencies on which communication takes place between the Base Radio and the Field Unit. Each RF Channel has a different set of frequencies, thus allowing the user to have multiple different wireless networks co-existing throughout the same facility.

All Base Radios and Field Units can be set to one of 16 different RF channels. The only Field Units recognized by a particular Base Radio are the units that are on the same RF Channel as that Base Radio. This allows the user to decide which Field Units communicate with each Base Radio.

The RF Channel can be thought of as a set of walkie-talkies. If both walkie-talkies are on channel one they can communicate. If a walkie-talkie is on channel one and the other is on channel two, they cannot communicate. Likewise, if two walkie-talkies are on channel one and two other walkie-talkies are on channel two, the walkie-talkies on channel one cannot hear what is being transmitted by the walkie-talkies on channel two.

Each Field Unit comes from the factory with the RF Channel set to OFF. This means the Field Unit will not communicate to any Base Radio. To set the Field Unit for communication, first determine the channel that you want to use. Then follow the Field Unit menu map shown in Figure 5.1 to configure the RF Channel.

![Figure 5.1: Menu Map to RF Channel Setting](image)

Once in the RF Channel menu, increment it by pressing the NEXT button. When selecting this value, do not choose an RF Channel that is currently being used by other AWS Wireless Systems as this can cause communication problems.

5.2: RF Baud Rate Selection

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>If you change the baud rate of a Field Unit, you must also change the baud rate of the Base Radio and all other Field Units that are communicating with that Base Radio to match.</td>
</tr>
</tbody>
</table>

The RF Baud Rate refers to the speed at which the Base Radio and Field Units communicate. The RF baud rate for the Base Radio and the Field Unit must be the same in order for successful communication to occur. There are three selectable settings with the fastest update times and ranges listed below:

- 4.8K – Rate of 4.8 Kbaud (Update every 20 seconds)
 – Range of 3000ft (Line of Sight)
- 19.2K – Rate of 19.2 Kbaud (Update every 5 seconds)
 – Range of 2000ft to 2500ft (Line of Sight)
- 76.8K – Rate of 76.8 Kbaud (Update every 1 second)
 – Range of 500ft to 750ft (Line of Sight)
5.2: Continued

A faster RF Baud Rate allows the user to transmit more information in a given period of time, but it will also limit the Field Unit’s range. If you need more distance out of your Field Units or are encountering difficulties by frequently losing communications, then select a slower baud rate.

Follow the Base Radio menu map shown in Figure 5.2 to configure the RF Baud Rate. The factory default is the 19.2K Baud Rate.

5.3: RF Identification (RF ID) Selection

Each Field Unit is identified by the Base Radio and WIM, according to the RF ID given to that particular unit. Two Field Units on the same RF Channel CANNOT have the same RF ID (if you do not know the RF Channel, see section 5.1). When the Field Unit is in the Operations Sequence, pressing the ENTER button displays the Read-Only Sequence on the LCD. The RF of that unit will be displayed in the format: ID 3.

All Field Units in your system are set to a default RF ID number upon shipment. For example, if you have ordered a Base Radio and three Field Units, the Field Units will be configured to ID’s 0, 0 and 0. You must set these units to three different RF IDs between 1 and 100. The Field Units in this example could be set to RF IDs 1, 2, and 3.

First determine the RF ID’s you’d like to give each unit. Then follow the menu map shown in Figure 5.3 to configure the RF ID. The factory default is RF ID 0, which disables the RF communication of the unit.

Once you have selected the RF ID you wish to use for this particular Field Unit, exit the menus and return to the Operations Sequence.

The Field Unit should now be successfully configured to the Base Radio. To check this, press ENTER while the Field Unit is in the Operations Sequence for the Read-Only Sequence to be displayed. You may see an RF SYNC message displayed on the Field Unit LCD. This means that the Field Unit and Base Radio are attempting to synchronize communications. If this is successful, the RF Status will display an RF OK message. If this is unsuccessful, the RF Status will display a NO RF message.

Also notice the two small arrows on either side of the LCD; if they are fluctuating up and down, that indicates the Field Unit and Base Radio are successfully communicating. If only one or none of the arrows are moving then they are not communicating successfully.
Configuring the Sampling and Transmission Rates

The Temperature Field Unit is very versatile with many programmable features and can be used in numerous different applications. Because no two applications are the same, some configuration is required for each unit. This section will walk you through the initial configuration of these sample and transmit settings. The subsections are as follows:

6.1: Selecting the Normal Transmission Rate
6.2: Selecting the Normal Sampling Rate
6.3: Selecting the Abnormal Transmission Rate
6.4: Selecting the Abnormal Sampling Rate
6.5: Setting the Smart Rate Threshold
6.6: Selecting the Normal Upper and Lower Values
6.7: Selecting Rates, Thresholds, and Deadbands via the Software

6.1: Selecting the Normal Transmission Rate*

The Normal Transmission Rate is the interval in which the Field Unit transmits data to the Base Radio. The Field Unit is in a “sleep” mode to save power during the operations sequence. This mode turns off most of the electronics on the unit, with the exception of the LCD, in order to preserve battery life. The Field Unit will then ‘wake up’ every Normal Sampling Period and take the necessary process value readings. The Field Unit will then transmit these readings to the Base Radio on an interval determined by the Normal Transmission Rate.

Notice that the fastest update rate of the Normal Transmission Rate is dependent on the baud rate setting you selected earlier (see Section 5.2). The transmission rates cannot update data faster than their communication speed allows. Thus, if you selected the 19.2K Baud Rate setting, your fastest transmission rate will be 5 seconds. The Field Unit automatically determines these settings and adjusts the menu options accordingly. A complete table of these parameters is shown in Section 6.2.

In order to properly set the Normal Transmission Rate, you must first determine how often you need updates from the Field Unit. You have a selectable range of 1-5, 10, 15, 20, 40 seconds and 1 minute. The factory default is 10 seconds.

Using Wireless Instrumentation Manager

If all of the data does not get through, the data is resent the following second. This prevents data from being lost. However, if the Transmission Rate is set to the maximum (1 second; 76.8K baud), then the data cannot be resent the following second because the next set of data must be sent in order to meet the Transmission Rate.

* Indicates that Menu is Disabled if Wireless Instrumentation Manager is detected. (See Appendix A)
6.2: Selecting the Normal Sampling Rate*

The Normal Sampling Rate is the interval in which the Field Unit reads the monitored process value. As previously mentioned, the Field Unit is in “sleep” mode to save power during the operations sequence. This mode turns off most of the electronics on the unit (with the exception of the LCD) in order to preserve battery life. The Field Unit will then ‘wake up’ for every Normal Sampling Period and take the necessary process value readings.

Notice that the minimum speed of the Normal Sampling Rate is dependent on the Normal Transmission Rate setting selected earlier (see section 6.1). The Sampling Rate cannot be slower than Normal Sampling Rate. Thus, if you set the Normal Transmit Rate setting to be 10 seconds, the Normal Sampling Rate must be set to 10 seconds or faster. A complete table of

<table>
<thead>
<tr>
<th>Baud Rate (communication range)</th>
<th>76.8K</th>
<th>19.2K</th>
<th>4.8K</th>
</tr>
</thead>
<tbody>
<tr>
<td>(fastest speed of updates)</td>
<td>500-750 feet</td>
<td>2000-2500 feet</td>
<td>3000 feet</td>
</tr>
<tr>
<td>1 Second</td>
<td>5 Seconds</td>
<td>20 Seconds</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normal and Abnormal Transmit Rates</th>
<th>Equal to Transmit Rate or Less</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Second or Greater</td>
<td>Equal to Transmit Rate or Less</td>
</tr>
<tr>
<td>5 Seconds or Greater</td>
<td>Equal to Transmit Rate or Less</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normal and Abnormal Sampling Rates</th>
<th>Equal to Transmit Rate or Less</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equal to Transmit Rate or Less</td>
<td>Equal to Transmit Rate or Less</td>
</tr>
</tbody>
</table>

In order to properly set the Normal Sampling Rate, determine how often updates are needed from the Field Unit when the process being monitored is operating under normal conditions. The Field Unit has a selectable range of 1-5, 10, 15, 20, 30, and 60 seconds depending on the Normal Transmission Rate. The factory default is 1 second. However, the more frequently the Field Unit wakes up to check the monitored device, the faster you will use up the battery life of the Field Unit.

Figure 6.2 is an example of what happens when the Normal Sampling Rate is too slow for the process being monitored. Notice how the rise in the voltage level falls between two normal samples, and thus goes completely undetected.

Figure 6.3 is an example of what happens when the Normal Sampling Rate is correctly set for the device that is being monitored. Notice how this setting makes it possible to sample the rise in the voltage level.

Once you have decided on the proper Normal Sampling Rate, follow the Field Unit menu map shown in Figure 6.4 to select this setting. The factory default is 1 second.

Using Wireless Instrumentation Manager

If you have the Wireless Instrumentation Manager software this menu option will not be accessible via the Field Unit once the Field Unit detects that the software is being used (See Appendix A for more details). An explanation of how to select the Normal Sampling Rate using the Wireless Instrumentation Manager software can be found in section 6.7.

* Indicates that Menu is Disabled if Wireless Instrumentation Manager is detected. (See Appendix A)
6.3: Selecting the Abnormal Transmission Rate*

The **Abnormal Transmission Rate** is identical to the Normal Transmission Rate with one exception. The Abnormal Transmission Rate only applies while the Field Unit is in an abnormal condition (see Section 6.6 Selecting the Normal Upper and Lower Values). This allows an increase or decrease in the frequency of information you receive depending on the operating conditions of the process being monitored.

In order to properly set the Abnormal Transmission Rate, determine how often updates are needed from the Field Unit when the process being monitored is operating under normal conditions. The Field Unit has a selectable range of 1-5, 10, 15, 20, 40 seconds and 1 minute. Figure 6.5 is an example of how the device switches transmission rates from Normal Transmission Rate to Abnormal Transmission Rate. Note how the first abnormal transmission is sent immediately when the Normal Upper Value set point is exceeded. The next transmission will then follow this immediate transmission by 10 seconds (or whatever the Abnormal Transmission Rate is set to). The transmissions will continue at this interval until the process value drops below the Normal Upper Value set point.

Once the process value drops below this set point, another transmission is sent to the Base Radio. The transmissions will then be sent at the Normal Transmission Rate of one minute (the current setting for the Normal Transmission Rate) from the time of the last abnormal transmission.

The user should also note that the transmission time depends on the sampling rate, and when the process value is sampled. If the Normal Sampling Rate is 30 seconds, then the process value may be above the Normal Upper Value for up to 29 seconds before an abnormal condition is detected. This means that the transmission could be as late as 29 seconds after the process value exceeded the Normal Upper Value.

Once you have decided the proper time for the Abnormal Transmission Rate, follow the Field Unit menu map shown in Figure 6.6.

Using Wireless Instrumentation Manager

If you have the Wireless Instrumentation Manager software this menu option will not be accessible via the Field Unit once the Field Unit detects that the software is being used (See Appendix A for more details). An explanation of how to select the Abnormal Transmission Rate using the Wireless Instrumentation Manager software can be found in section 6.7.

* Indicates that Menu is Disabled if Wireless Instrumentation Manager is detected. (See Appendix A)
6.4: Selecting the Abnormal Sampling Rate*

The **Abnormal Sampling Rate** is identical to the Normal Sampling Rate with one exception. The Abnormal Sampling Rate only applies while the Field Unit is in an abnormal condition (see 6.6 Selecting the Normal Upper and Lower Values). This allows an increase or decrease of the frequency of information you receive depending on the operating conditions of the process being monitored.

In order to properly set the Abnormal Sampling Rate, determine how often updates are needed from the Field Unit when the process being monitored is operating under normal conditions. The Field Unit has a selectable range of 1-5, 10, 15, 20, 40 seconds and 1 minute. Figure 6.7 is an example of how the device switches sampling methods from Normal Sampling Rates to Abnormal Sampling Rates. Note how the first abnormal sample is taken a few seconds after the Normal Upper Value set point is exceeded. The next sample will then follow this sample by 5 seconds (or whatever the Abnormal Sampling Rate is set to). These samples will continue at this interval until the process value drops below the Normal Upper Value set point.

Once the process value drops below this set point the sampling rate will return to the Normal Sampling Rate. Also, the Abnormal Sampling must be equal to or faster than the Abnormal Transmission Rate.

The user should also note that the transmission time depends on the sample rate, and when the process variable is sampled. If the Normal Sampling Rate is 30 seconds, then the process variable may be above the Normal Upper Value for up to 29 seconds before abnormal condition is detected. This means that the transmission could be as late as 29 seconds after the process variable exceeded the Normal Upper Value.

Once you have decided the proper time for the Abnormal Sampling Rate follow the Field Unit menu map shown in Figure 6.8.

Using Wireless Instrumentation Manager

If you have the Wireless Instrumentation Manager software this menu option will not be accessible via the Field Unit once the Field Unit detects that the software is being used (See Appendix A for more details). An explanation of how to select the Abnormal Sampling Rate using the Wireless Instrumentation Manager software can be found in section 6.7.

* Indicates that Menu is Disabled if Wireless Instrumentation Manager is detected. (See Appendix A)
6.5: Setting the Smart Rate Threshold*

The Smart Rate is a feature used to trigger radio transmission of the measured data sooner than the normal or abnormal rate specified by the user. This feature is used to construct a more accurate graph of the measured process value vs. time than is possible with the fixed transmission rates, while using less battery power.

To configure the **Smart Rate Threshold** follow the user menu to the SMART R menu and press the ENTER button. The user is then asked to enter the amount that the process variable must change since the last data sample, in order to trigger a new transmission of the process variable.

If the process value changes by more than the entered Smart Rate amount within the normal or abnormal sampling rate (whichever is active), then the process variable is transmitted immediately. The normal/abnormal transmit clock is then reset upon this transmission. If no Smart Rate amount exceeding change takes place in the next normal/abnormal sample then the next transmission will be the normal/abnormal transmit rate period.

The amount entered is in the same units as were selected by the user to be displayed on the Field Unit. If the measured process value does not change by more than the entered Smart Rate amount within the time between the sampling rate (whichever is active), then the process value is transmitted on the next transmit rate.

If changes in the process value, which exceed the Smart Rate Amount, continue to occur, the process value is transmitted repeatedly.

If you have the Wireless Instrumentation Manager software, this menu option will not be accessible via the Field Unit once the Field Unit detects that the software is being used (See Appendix A for more details). The Smart Rate should be enabled using the Wireless Instrumentation Manager software. To do so, enter the configuration menu (See Section 9.2 of the Wireless Instrumentation Manager User Manual). Once in the configuration menu click on the **Sampling Rates** tab to bring up the sampling rate information as shown in Figure 6.9.

To enable the Smart Rate, click the check-box labeled **Enable SmartRate** for the correct input. The user will then be allowed to enter a “delta”, or amount changed, value which will trigger a transmission.

Once a value has been entered, click **OK** to save and download the configuration changes to the Field Unit.

* Indicates that Menu is Disabled if Wireless Instrumentation Manager is detected. (See Appendix A)
Each AWS Temperature Field Unit is equipped with a temperature level upper and lower value. As the temperature is measured, it is compared to a set threshold value. Depending upon the setting of that value, whether it is enabled or not, and what the time deadband is, the Field Unit will enter an Abnormal condition as seen in Figure 6.10.

The Normal Upper Value would be an indication that the temperature is ‘high’ and the Normal Lower Value would be an indication that temperature is ‘low’. Thus the normal operating condition for the temperature application would be found in between the two Normal Values. To configure the values, follow the Field Unit menu map shown in Figure 6.11.

When configuring the Normal Values you will first be prompted to enable the input. You should only disable an input if it will not be used.

Once an input has been enabled, the user may enter a Normal Upper Value, Normal Lower Value, and the Smart Rate Threshold (see Section 6.5). If, for example, the Normal Upper Value is enabled, the next prompt you will receive is –XX.XX for the process variable value. Increment this value to the desired value and press the ENTER button. (The "-" may be toggled on and off as well).

The final prompt you will receive is the Time Deadband prompt. The Time Deadband refers to the number of seconds that the measured reading must stay in a certain condition before the Field Unit will actually switch to that condition. To select a proper Time Deadband, consider the example in Figure 6.12. Notice that the Field Unit continues to cycle from Normal to Abnormal Conditions due to the fact that the input value is fluctuating around the 7.5 Volt Normal Upper Value. This is undesired. The addition of a few second delay before the Field Unit switches conditions will eliminate this ‘chatter’, as seen in Figure 6.13.

If you have the Wireless Instrumentation Manager software this menu option will not be accessible via the Field Unit once the Field Unit detects that the software is being used (See Appendix A for more details). An explanation of how to select the Abnormal Sampling Rate using the Wireless Instrumentation Manager software can be found in section 6.7.

6.6: Selecting the Normal Upper and Lower Values*

Figure 6.10: Normal Upper and Lower Value Example

Figure 6.11: Menu Map to Normal Upper and Lower Value Settings

Figure 6.12: Condition “Chatter” Without Time Deadband

Figure 6.13: Condition “Chatter” Elimination Due to Time Deadband

Using Wireless Instrumentation Manager

* Indicates that Menu is Disabled if Wireless Instrumentation Manager is detected. (See Appendix A)
6.7: Selecting Rates, Thresholds, and Deadbands via the Software

If you have the Wireless Instrumentation Manager software the Normal and Abnormal Sampling and Transmission menu options will not be accessible via the Field Unit once the Field Unit detects that the software is being used (See Appendix A for more details). These settings should be entered using the Wireless Instrumentation Manager software. To do so, enter the configuration menu (See Section 9.2 of the Wireless Instrumentation Manager User Manual). Once in the configuration menu click on the Sampling Rates tab to bring up the sampling rate information, as shown in Figure 6.14.

To select the Normal Transmission Rate, select one of the time periods from the drop box. Next, select an Abnormal Transmission Rate in the same manner. Note that the Normal and Abnormal Transmission Rate can be the same.

Once the transmission rates have been selected, the user should select the desired sampling rates. Note that the sampling rate must be equal to or faster than the associated transmit rate. For example, in Figure 6.14 the Normal Transmission Rate is set to 10 seconds and the Normal Sampling Rate is also set to 10 seconds. This is a valid configuration. Another example in Figure 6.14 is the Abnormal Transmission Rate being set to 3 seconds and the Abnormal Sampling Rate being set to 1 second.

If you incorrectly enter the Transmission and Sampling Rates, a message will be displayed explaining this. You will not be allowed to enter an incorrect setting.

Using Wireless Instrumentation Manager

If you have the Wireless Instrumentation Manager software the Normal and Normal Upper and Lower Value menu options will not be accessible via the Field Unit once the Field Unit detects that the software is being used (See Appendix A for more details). These settings should be entered using the Wireless Instrumentation Manager software. To do so, enter the configuration menu (See Section 9.2 of the Wireless Instrumentation Manager User Manual). Once in the configuration menu click on the Sampling Bands tab to bring up the sampling band information as shown in Figure 6.15.

To set a limit to the normal condition, enable the limit by clicking on the Use Input X Limit check box. Then enter the value and time deadband for the limit (for more details see Section 6.6 of this manual).
Configuring the Process Variable

This section helps the user in the selection of engineering units, as well as discussing the setting of a measurement offset, selecting the sensor type, and trimming the process measurement. The subsections are as follows:

- 7.1: Selecting Units of Measure
- 7.2: Selecting the Sensor Type
- 7.3: Setting a Measurement Offset
- 7.4: Trimming the Measurement
- 7.5: Entering a 22-Point Curve

7.1: Selecting Unit of Measure*

The Field Unit can be used in many different types of applications. To accommodate these various options, there are various engineering units that can be selected.

Please note that the units selected apply to both Input 1 and Input 2. Each input may not use different units.

To select units of measurement, follow the Field Unit menu map shown in Figure 7.1. The factory default units is Degrees C.

If you have the Wireless Instrumentation Manager software this menu option will not be accessible via the Field Unit once the Field Unit detects that the software is being used (See Appendix A for more details). The process variable units should be entered using the Wireless Instrumentation Manager software. To do so, enter the configuration menu (See Section 9.2 of the Wireless Instrumentation Manager User Manual). Once in the configuration menu click on the **General** tab to bring up the general information.

To select the units, click the drop down box labeled **Input Units**. Select units you wish to use from the available list.

Once a valued has been entered, click **OK** to save and download the configuration changes to the Field Unit.

7.2: Selecting the Sensor Type

Depending on the type of thermocouple or RTD the user intends to employ for temperature measurement, the sensor setting must be set to the corresponding sensor type.

For a Thermocouple Field Unit the factory default is a J thermocouple. In the case of a WI-TC-S this setting refers to both thermocouple inputs. Thus, two different thermocouple types cannot be wired into the same Field Unit.

For a RTD Field Unit the factory is a 4 wire DIN platinum sensor.

To select the sensor type, follow the Field Unit menu map shown in Figure 7.2.

* Indicates that Menu is Disabled if Wireless Instrumentation Manager is detected. (See Appendix A)
7.3: Setting a Measurement Offset

For various applications, the user may wish to display an offset value rather than the actual value. To enter an offset, navigate to the OFFSET command, as shown in Figure 7.3, select the desired input to be offset. Then enter the offset to be added or subtracted from the actual measured value.

7.4: Trimming the Measurement

The Field Unit interface allows you to set a two-point correction curve for the sensor. This process is often called “trimming” because the displayed value is trimmed up or down to reflect the actual value being applied.

To set a trim point, take the Field Unit offline and navigate to the TRIM menu, as shown in Figure 7.4, and select the input to be trimmed. Then select the point you wish to enter. After selecting the point, you will have the option to trim the device or reset the trim. If NEW TRIM is selected, you will be prompted to enter the lower point first. Type the value and press ENTER. The Field Unit will prompt you to apply the indicated process value to the Field Unit. Apply the process value and press ENTER. Repeat the process for the higher point. After both points have been trimmed, you can choose to save or discard the new trim.

7.5: Entering a 22-Point Curve

If you have the Wireless Instrumentation Manager software, a 22-point sensor offset curve may be entered for the Field Unit. To do so, enter the configuration menu (See Section 9.2 of the Wireless Instrumentation Manager User Manual). Once in the configuration menu click on the Sensor Offset tab to bring up the offset information as shown in Figure 7.5.
Section 8

Maintaining the Field Unit

The Field Unit is extremely easy to maintain in that it requires no periodic calibration or system checks. The Field Unit has a self diagnostic which is constantly checking the internal system. If any errors are found, they are reported via the LCD, Base Radio, or the software. A simple yearly visual inspection for the following is all that is needed:

- Is the Field Unit still securely fastened to the equipment being monitored?
- Are there any visible corrosions, cracks or residue build-ups on the unit?
- Has anything about the application changed from the original intended use?

8.1: Changing the Battery

The battery will need to be changed within one month of seeing a ‘LOW BAT’ message on either the Field Unit or in WIM. This is a simple process:

1. Make sure you have the correct replacement battery:

 AWS model # WI-BATTERY-KIT
 TADIRAN™ Lithium Inorganic Battery (non-rechargeable)
 Size “C” – 3.6Volts
 #TL2200/S

2. Simultaneously press and hold the NEXT and ENTER buttons to power down the Field Unit. Then enter the password.

3. Remove the 4 set screws on the sides of the Field Unit housing with a standard screwdriver.

4. Remove the housing and locate the battery. Warning! When removing the housing do not twist or bend the green flex cable! Doing so may cause the tether to improperly seat next to the antenna and greatly reduce operable RF distances. Do not allow the housing to flop around while hanging by the tether.

5. Remove the old battery and replace it with the new battery, positive end first. (Note that the positive end of the battery clip is the end with the red wire).

6. Replace the housing and screw the housing back on. Power up the unit by pressing and holding both the NEXT and ENTER buttons for a few seconds.

7. Properly dispose of the used battery.
Technical Specifications

T/C Input Characteristics
- RTD and Thermocouple linearization to ± .05 °C± 0.1 % of Full-scale Reading Plus 1.8 °F (1 °C) for Thermocouple Cold-junction
 - Effect at Reference Conditions (unit should be powered for 1-5 minutes for best accuracy)
- ± 0.002 % of reading per °C for Ambient Temperature Effect (RTD)
- ± 0.01 % of reading per °C for Ambient Temperature Effect (Thermocouple)
- Stability deviation per year is less than 0.025 %
- Note: For Dual T/C installations, the inputs share a common ground (-). Use Ungrounded T/C’s or ensure that both T/C’s are at the same ground potential to avoid ground loop effects.

Local Input Switch Characteristics (WI-TC/RT-S only) (Simple Device Closure Only) Optional
- Number of Channels: TC-2 RT-1
- Max External Switch Impedance Applied: 1 KOhm
- Isolation: 110 KOhms (between output (-) and input (-))
- Connector: Wire size 28-16 AWG
- For simple device monitoring only! (i.e., contact closures)

RF Characteristics
- 902 MHz – 928 MHz Frequency Hopping Spread Spectrum, FCC certified ISM license-free band
- Up to 3000’ range from Base Radio with clear line of sight;

Operating Temperature Range
- -40 °F to +185 °F (-40 °C to +85 °C) electronics
- -4 °F to +158 °F (-20 °C to +70 °C) display (full visibility)
- -40 °F to +185 °F (-40 °C to +85 °C) display (with reduced visibility)

Physical Characteristics
- Aluminum junction box
- GE Lexan® cover. V-0 rating and UV stable

Operating Vibration and Shock Characteristics
- Certified per IEC EN00068 2-6 (vibration) and 2-27 (shock)

Random Vibration Characteristics
- Certified to withstand 6 g’s, 15 minutes per Axis from 9 – 500 Hz

Electromagnetic Compatibility (CE Compliance)
- Operates within specification in fields from 80 to 1,000 MHz with Field strengths to 30 V/m.
- Meets EN 50082-1 general immunity standard and EN 55011 compatibility emissions standard

Industrial Certification
- Rated for industrial use -40 °F to 185 °F(-40 °C to 85 °C)
- FM NEMA 4X(Integrated) or 4 (Split) weather-proof housing
- FM rated intrinsically safe for Class I/II/III, Division 1, Groups A,B,C,D,E,F&G; Class I/II/III, Division 2, Groups A,B,C,D,F&G
Split Architecture
WI-RT-S and WI-TC-S

Integrated Architecture
WI-RT-I and WI-TC-I

Dimensioned Mechanical Drawings
Section 9: Technical Specifications

FM APPROVED INTRINSICALLY SAFE INSTALLATION CONTROL DRAWING

HAZARDOUS (CLASSIFIED) LOCATION

Class I, Zone 0, Group IIC
Class I, Division 1, Groups A, B, C, and D
Class II, Division 1, Groups E, F, and G
Class III

UNCLASSIFIED LOCATION

Notes:
1. The Intrinsic Safety Entity concept allows the interconnection of two FM Approved Intrinsically safe devices with entity parameters not specifically examined in combination as a system when:
 - $U_0 \leq V_{oc}$ or $V_t \leq V_{max}$, $I_0 \leq I_{sc}$ or $I_t \leq I_{max}$, C_a or $C_{o} \geq C_{i} + C_{cable}$, L_a or $L_{o} \geq L_{i} + L_{cable}$, $P_0 \leq P_{i}$.
 - Dust-tight conduit seal must be used when installed in Class II and Class III environments.
 - Control equipment connected to the Associated Apparatus must not use or generate more than 250 Vrms or Vdc.
 - Installation should be in accordance with ANSI/ISA RP12.6 "Installation of Intrinsically Safe Systems for Hazardous (Classified) Locations" and the National Electrical Code® (ANSI/NFPA 70) Sections 504 and 505.
 - The configuration of associated Apparatus must be FM Approved under Entity Concept.
 - Associated Apparatus manufacturer's installation drawing must be followed when installing this equipment.
 - No revision to drawing without prior FM Approval.
 - RTD, TC, and Contact Input process connections to a Simple Apparatus Only.
 - Accutech WI-AI, WI-AV has an internal ground screw mounted in the enclosure and must be connected to IS ground.
 - All conduit connections must be sealed within 18" per NEMA 4 Standards for models WI-xx-N, WI-xx-NT, CO-xx-N and CO-xx-NT.

CERTIFICATION DOCUMENT – NO CHANGES PERMITTED WITHOUT PRIOR FM APPROVAL

<table>
<thead>
<tr>
<th>Drawn By</th>
<th>Date: 10/24/03</th>
<th>Adaptive Instruments Corp</th>
</tr>
</thead>
<tbody>
<tr>
<td>JC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This drawing and specifications, herein, are the proprietary property of ADAPTIVE INSTRUMENTS and shall not be reproduced in whole or in part as the basis for manufacture or sale without written permission from Adaptive Instruments.
CSA APPROVED INTRINSICALLY SAFE INSTALLATION CONTROL DRAWING

HAZARDOUS (CLASSIFIED) LOCATION
Class I, Zone 0, Group IIC
Class I, Division 1, Groups A, B, C, and D
Class II, Division 1, Groups E, F, and G
Class III

UNCLASSIFIED LOCATION

RTD, TC, Contact Inputs - see Note 8
Accutech
Wi-AI, Wi-AV
only

Associated
Apparatus

Control
Equipment

Accutech Wi-AI, Wi-AV Entity Parameters:
Ui (Vmax) = 30V
Ii (Imax) = 100mA
Pi = 0.9W
Ci = 0
Li = 0

Notes:
1. The Intrinsic Safety Entity concept allows the interconnection of a CSA Certified Associated Apparatus to a CSA Certified Intrinsically Safe field device, each with entity parameters not specifically examined in combination as a system when: Voc or Uo ≤ Vmax or Ui, Isc or Is ≤ Imax or Ii, Ca or Co ≥ Ci + Ccable, La or Lo ≥ Li + Lcable, Po ≤ Pi. Where two separate barrier channels are required, one dual-channel or two single-channel barriers may be used, where in either case, both channels have been Certified for use together with combined entity parameters that meet the above equations.
2. Dust-tight conduit seal must be used when installed in Class II and Class III environments.
3. Control equipment connected to the Associated Apparatus must not use or generate more than 250 Vrms or Vdc.
4. Installation should be in accordance with the Canadian Electrical Code, Part 1, Section 18.
5. The configuration of associated Apparatus must be CSA Certified under the Entity Concept.
6. Associated Apparatus manufacturer's installation drawing must be followed when installing this equipment.
7. No revision to drawing without prior CSA Approval.
9. Accutech Wi-AI, Wi-AV has an internal ground screw mounted in the enclosure and must be connected to IS ground.

Division 2 Warning Statement:
WARNING: EXPLOSION HAZARD - DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN SWITCHED OFF OR THE AREA IS KNOWN TO BE NON-HAZARDOUS

Division 1, Division 2, Zone 0 Warning Statement:
WARNING: EXPLOSION HAZARD - SUBSTITUTION OF COMPONENTS MAY IMPAIR SUITABILITY FOR USE IN A HAZARDOUS LOCATION.

CERTIFICATION DOCUMENT – NO CHANGES PERMITTED WITHOUT PRIOR CSA APPROVAL

NOTICE:
This drawing and specifications, herein, are the proprietary property of ADAPTIVE INSTRUMENTS and shall not be reproduced in whole or in part as the basis for manufacture or sale without prior written permission from Adaptive Instruments.

Adaptive Instruments Corp.

<table>
<thead>
<tr>
<th>N/A</th>
<th>N/A</th>
<th>Adaptive Instruments Corp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>TITLE:</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>I/S Installation Control Drawing – Wireless Sensors</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>Scale</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>Size</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>Drawing NO</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>6023 520</td>
</tr>
</tbody>
</table>
Section 9: Technical Specifications

SENSOR CONNECTIONS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>SENSOR CONNECTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>WI-AM, SW-AM (Acoustic Monitor)</td>
<td>Integral Sensor – no external connections</td>
</tr>
<tr>
<td>WI-GP-I, WI-AP-I</td>
<td>Integral Sensor – no external connections</td>
</tr>
<tr>
<td>WI-RT-I</td>
<td>Integral Sensor – no external connections</td>
</tr>
<tr>
<td>WI-TC-I (T/C Temperature)</td>
<td>Integral Sensor – no external connections</td>
</tr>
</tbody>
</table>

INPUT CONNECTIONS

<table>
<thead>
<tr>
<th>J1 (Terminal Board) Sensor Input</th>
<th>J3 (Terminal Board) Input Switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (CH1+)</td>
<td>2 (CH1-)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>WI-RT-S, WI-RT-M CO-RT-S, CO-RT-E CO-RT-M WI-RT-E, WI-RT-EL (RTD Temperature)</td>
<td>RTD+</td>
</tr>
<tr>
<td>WI-TC-S, WI-TC-E WI-TC-M, WI-TC-EL (T/C Temperature)</td>
<td>T/C 1+</td>
</tr>
<tr>
<td>WI-AI, WI-AI-M (Dual 4/20mA)</td>
<td>4/20mA CH1+</td>
</tr>
<tr>
<td>WI-AV, WI-AV-M (Dual 0-10V)</td>
<td>0-10V CH1+</td>
</tr>
<tr>
<td>WI-SI-S, WI-SI-M, WI-SI-E, WI-SI-EL (Dual Switch Input)</td>
<td>Input SW1+</td>
</tr>
</tbody>
</table>

NOTICE:

This drawing and specifications, herein, are the proprietary property of ADAPTIVE INSTRUMENTS and shall not be reproduced in whole or in part as the basis for manufacture or sale without prior written permission from Adaptive Instruments.
yy = Y6, Y9 \(z = \) Antenna cable length, max length 100 ft with bonded ground.

NOTE: Devices connected to J3 and input wires must be of "Simple Apparatus" type.
Navigating User Menus

Pressing either the NEXT or ENTER buttons located on the front of the Field Unit or Base Radio just below the Liquid Crystal Display (LCD) screen is all that is needed to navigate the respective menus. Pressing both of these buttons for one second will turn the unit on.

Pressing the NEXT button at any time while the Field Unit is cycling through the normal messages causes the Field Unit to enter the setup mode. The NEXT button is then used to step through menu options, and the ENTER button is used to enter a sub menu of what is displayed on the LCD at that time. If no button is pressed within a 30 second period, the unit goes back to the normal display mode.

If you enter a sub menu that requires a numerical input, such as 001, the left most 0 will be blinking. This indicates that pressing the NEXT button will increment this value with each press from 0 to 9 and back to 0 again. Pressing the ENTER button will move to the next available value. If the last value is blinking, pressing ENTER will save the entered values and return from the sub menu.

If both the NEXT and ENTER buttons are depressed at once, a message on the LCD displaying OFF? will appear. If both buttons are released upon appearance of this message the user will be returned to the scrolling main screen. If both buttons are not released for the duration of the OFF? message the unit will power down and turn off. Note: If the unit is turned off while entering values in a sub menu, those values will NOT be saved.

* As shown throughout the document, this mark indicates that these menu options will automatically turn off if the Wireless Instrumentation Manager Software is used. All changes to these Field Unit menu options should be made through software instead. This is to prevent simultaneous changes from taking place. If you wish to discontinue use of the software and want these menus re-instated, you must contact your AWS Sales Representative.
Field Unit Displayed Message Definitions

This section covers the various messages, displayed on the Field Unit LCD, that occur during operation of the device.

Operations Sequence

- **RF Link Status**
 - RF OK – Field Unit and Base Radio are communicating properly
 - RF SYNC - Field Unit and Base Radio are attempting to synchronize communications.
 - RF OFF - Field Unit's RF Channel is set to RF OFF
 - NO RF - Field Unit and Base Radio have no communications

- **Temperature Input Level**
 - XX.XX – Currently measured Temperature Input level

Error Messages

If an error is detected with the operation of the Field Unit a message will be displayed on the Field Unit LCD (a corresponding message may also appear on the Base Radio LCD).

There are few types of error messages, warning and fatal. Warning messages are displayed as part of the normal cycling message sequence. These are:

- **LOW BAT** - battery should be replaced as soon as possible
- **NO RF** - cannot detect Base Radio
- **S FAULT** - there is an open sensor or excitation wire detected. Also if a sensor value goes above/below logical limits. The unit will display 9999.99 for measurement (sensor fault mode); but will continue sampling and recover if the problem desists.
- **OVERRNG** - the device is measuring a value above/below sensor dependent bound values. For example, the Analog Input device will report over-range if measurement is above 100% range of the Analog Input sensor. If the measurement goes above 150% full range, the unit will go into Sensor Fault mode. In over-range mode, the measurement continues to be displayed, with the "OVERRNG" message to remind the user that the specified range of the sensor and the calibrated range of the device is being exceeded.

Fatal error messages will replace the normal cycling message sequence and will flash. A fatal message indicates the Field Unit is no longer operating normally and requires repair. These are:

- **RF ERR** - fatal error within RF communications
- **SEN ERR** - fatal error within the sensor electronics
- **SYS ERR** - fatal error within the microprocessor system
- **RF CAL** - fatal error within the RF calibration system
ABOUT US

Adaptive Wireless Solutions develops, produces and supports partner specific, high value industrial measurement and process solutions that enable our end users to increase efficiency, through-put and environmental compliance.

AWS customers include large national companies in the oil and gas, chemicals, pharmaceutical, food and beverage, primary materials processing, and energy industries. In addition to the wireless product line, AWS also offers a traditional wired line of temperature, pressure and differential pressure instrumentation.

In the process control field, where quality is taken for granted and new technology is announced daily, we have deliberately concentrated our efforts on the development of instrumentation that makes business sense. The result is a product range that is rugged, secure, and reliable and works in even the most hazardous environments. We give companies the tools to reduce costs, save time, enhance safety, improve environmental performance and cut waste.

The next industrial revolution is right now. Let AWS show you how to realize gains in operating efficiency.

Visit us at: www.adaptive-wireless.com

Or call us at +1 (978) 875-6000

Specifications subject to change without notice. Printed in USA. Copyright 2010 Adaptive Wireless Solutions

Adaptive Wireless Solutions Inc
577 Main St
Hudson, Ma 01749

Phone: (978) 875-6000
Fax: (978) 568-9085

www.adaptive-wireless.com